
X4. Software and sample programs. Give an indication of the programming language
facilities, assemblers/compilers, program libraries, applications packages, etc., for the
machine (or family of machines). Give annotated sample fragments of programs to
illustrate various software features. Give a reference to any machines still in working
order, and/or to existing simulators that can run (for example) on a modern PC. Give
accurate references to the sources of all information – see X5 below. (Contributes to
database blocks D5, D6, D7).

E5X4. Elliott 900 Series: Software and Sample Programs.

18-bit machines.

Symbolic Input Routine (SIR).

Before SIR, there was a “Non-symbolic Assembler” called “T2”, which was still in use in
late 1966. But even T2 accepted decimal notation for function codes, addresses, and
constants; in contrast to the early software for microprocessors a decade later, whose
monitor programs could only be programmed in hexadecimal.

SIR is what nowadays would be called a “Symbolic Assembler”.
To quote a brochure of the era, “Elliott MCS 920B Computer Programming” [4]:

“SIR enables machine code programs to be written with addresses referred to by
invented names. It simplifies editing, as the insertion or removal of instructions
does not require the wholesale modification of addresses in the rest of the
program. Also it is easier to spot mistakes in names than in numbers. Store
locations must be reserved by the programmer by labelling them with invented
names. The addresses are then allocated to the locations at assembly time, thus
removing from the programmer the burden of organising store space.”

The Elliott 900-series 18-bit machines do not have what nowadays would be called an
“immediate address mode”. The “N” part of an instruction usually holds the address of
the operand, not the value of the operand (the exception being shifts, where the shift
distance is given).

As explained in the “Elliott 900 Technical Manual, Volume 2A, Programming
Information” [14] part 1 section 1, SIR implements this facility in software, sharing
several uses of the same constant:

[One of the] “Advantages of Programming in SIR” [is that] “The programmer can
write an instruction using a constant in the address part without having to specify
where that constant is stored”, [using a] “LITERAL – a constant appearing as the
address part of an instruction”. “The constant is placed into the address part of the

Elliott 900 Series: Software and Sample Programs. E5X4 page 1.

instruction. During assembly, the assembler on reading the end of program symbol
% allocates a store location to the constant, places the constant therein and finally
inserts the address of this location in all of the instructions using this constant”.

The standard version of SIR can operate in load-and-go mode. SIR occupies from around
location 5500 upwards of the 8192-word store; and it loads the user’s program upwards
from low memory whilst building the symbol table downwards from itself. Forward
references to a constant or unresolved symbol are chained together through their “N”
fields. The standard version of SIR can also produce relocatable binary tapes.

For embedded applications, “2-Pass SIR” is available. On the first pass of the source tape,
just a symbol table is built in store. On the second pass, the source tape is converted to an
absolute binary tape line-by-line, suitable for reading under initial instructions. This
enables a program to be written occupying every store location, apart from those used for
the registers, initial instructions, and 2-Pass SIR’s own sum-checking loader (a mere 13
words, and even these can be used for variables, once the program is loaded).

MASIR was a later development of the standard version of SIR, providing Macro
expansion facilities. It also provided some extra facilities to facilitate programming
machines that had more than 8192 words of store.

SIR Subroutines.

The standard SIR library includes routines for:
Single-length input & output,
Single-length fixed-point mathematical functions:

Sine & Cosine, Square Root, ArcTangent,
Logarithm and Exponent,

Interpreted double-length fixed-point arithmetic, QDLA,
including double-length input & output,

Double-length fixed-point mathematical functions,
Interpreted floating-point arithmetic, QF,
Floating-point input & output, QFIN/QFOUT,
Floating-point mathematical functions, QFMATH,
Magnetic tape handling.

Two sample SIR subroutines are given below. I’ve chosen them because I happen to have
them available on modern media. They are similar to those in the 903 library generally
issued, but have been optimised for embedded system use. One difference is that the
standard library assumes that the link location and entry point are in consecutive store
locations, whereas the examples below give them separate labels. This is to permit easy
separation of code and data in applications requiring a runtime store sumcheck. The SIR
notation “>N” used below means “reserve N locations here as uninitialised workspace”.

Elliott 900 Series: Software and Sample Programs. E5X4 page 2.

Sample Sine & Cosine Subroutine.

The first example is a subroutine for finding the Sine or Cosine of an angle, (or both). The
maximum number of obeyed instructions is 21 for Sine or 22 for Cosine. The maximum
error is believed to be ±2-17.

Whichever function is required, the Accumulator (viewed as holding a signed pure
fraction) should contain the angle, θ, scaled by 180˚ or π radians, on entering. Thus:

the sign bit represents minus 180˚ or π radians,
the next bit represents plus 90˚ or π/2 radians,
the third bit represents plus 45˚ or π/4 radians, and so on.

This fixed-point representation of angles exploits the natural wrap-round properties of the
underlying hardware. This representation was subsequently named “BAMS”, the Binary
Angle Measurement System”, in some quarters, but not in 900-series software.

The instruction pair:
11 SINL
8 SINE

places ½ Sin θ in the Accumulator (viewed as holding a signed pure fraction);
11 COSL
8 COSE

places ½ Cos θ in the Accumulator (viewed as holding a signed pure fraction);
11 SICOL
8 SICOE

places ½ Sin θ in store location SICOS, and places ½ Cos θ in the Accumulator.

((SINE & COSINE SUBROUTINE, 1/12/71)

[SINL SINE COSL COSE SICOL SICOE SICOS]

SICOL >1
SICOS >1
ANGLE >1
SINL COSL
LINK >1
X >1
XSQ >1

SICOE 5 ANGLE
11 SINL
8 SINE
5 SICOS
4 SICOL
5 COSL
4 ANGLE

COSE 1 +.5

SINE 1 +.25
0 +0
9 ;+2
0 +1

14 1
9 COS

SIN 1 -.5
5 X
12 X
5 XSQ
12 -307
1 +5223

Elliott 900 Series: Software and Sample Programs. E5X4 page 3.

12 XSQ
1 -42334
12 XSQ
1 +102944
12 X
/8 END

COS 1 +.5
5 X
12 X
5 XSQ
12 -1367
1 +16634
12 XSQ
1 -80852
12 XSQ
1 +.5
/8 END

END 2 +0
0 LINK
/8 1

Sample Output Subroutine.

The second example is an output routine, SLOP (Single-Length OutPut), which converts
the 18-bit number in the accumulator into a sequence of 7-bit characters, and outputs
these by calling CHOP (CHaracter OutPut). CHOP is not given here, but in its simplest
form, it just adds even parity to the 8th track and sends the character to the TeleType.

SLOP is called by the instruction pair:
11 SLOPL
8 SLOPE+N

were N determines which entry point is used and hence which format is produced:
N=0 unsigned integer with leading-zero suppression,
N=1 signed integer with leading-zero suppression,
N=2 signed pure fraction with six digits, unrounded,
N=3 unsigned octal number with six digits, prefixed by “&”,
N=4 alphanumeric group, a three-character string, prefixed “£” or “#”.

((SINGLE-LENGTH OUTPUT SUBROUTINE, 9/8/71))

(Outputs the contents of the accumulator as an
unsigned integer, signed integer, signed fraction,
octal number, or alphanumeric group)

[SLOPL SLOPE CHOPL CHOPE]

SLOPL >1 (Link)
INTGR >1 (Remainder of number being printed)
FLAG >1 (Indicates format)
DIGCT >1 (Count of digits printed)
SUBCT >1 (Count of subtractions)
ZERMK >1 (+0 until nonzero digit found)

SLOPT -100000 -10000 -1000 -100 -10 -1

SLOPE 8 UINT
(+1) 8 SINT
(+2) 8 FRAC1
(+3) 8 OCTA1

(+4) 7 SINT
5 INTGR
4 -35 (-[#])

Elliott 900 Series: Software and Sample Programs. E5X4 page 4.

8 ALPH1

UINT 5 INTGR
4 +0
5 FLAG
8 MEET1+2

SINT 5 INTGR
4 +0
8 ;+3

FRAC1 5 INTGR
4 +46 ([.])
5 FLAG

4 INTGR
9 ;+3
4 +43 ([+])
8 ;+5
2 +0
9 OCTA1 (Jump iff &400000)
5 INTGR
4 +45 ([-])
11 CHOPL
8 CHOPE (Print sign)

4 FLAG
7 MEET1+2
8 MEET1

OCTA1 5 INTGR
4 -38 (-[&])

ALPH1 5 FLAG
2 +0

MEET1 11 CHOPL
8 CHOPE (Print [.], [&], or [#])

(+2) 5 ZERMK
4 -5
5 DIGCT

NEXT 4 FLAG
9 OCALP
7 INT2

(FRAC2) 4 INTGR
12 +10
3 INTGR
8 MEET2

OCALP 2 -35
7 ALPH2

(OCTA2) 2 INTGR
4 INTGR
14 3
5 INTGR
6 +7
8 MEET2

ALPH2 4 INTGR
7 EXIT
5 ZERMK
0 +0
14 6
5 INTGR

4 ZERMK
14 8180

Elliott 900 Series: Software and Sample Programs. E5X4 page 5.

6 &77
1 -1
7 ;+2
1 -61
1 +94
8 MEET2+1

INT2 5 SUBCT
0 DIGCT
4 INTGR
9 ;+4 (Jump iff > 131071)
/1 SLOPT+5
9 ;+7
8 ;+2
/1 SLOPT+5
5 INTGR
10 SUBCT
10 ZERMK
8 ;-8

4 ZERMK
7 ;+5
4 SUBCT

MEET2 1 +48 (Number+48 = [Number])
(+1) 11 CHOPL

8 CHOPE (Print digit, <S>, or Alphanumeric)

10 DIGCT
4 DIGCT
9 NEXT
10 ZERMK
7 NEXT

EXIT 0 SLOPL
/8 1

ALGOL Compiler.

To quote the brochure “Elliott MCS 920B Computer Programming” [4] again:

“ALGOL is the international scientific-oriented language that allows programs to
be written in a combination of English words and mathematical expressions. The
saving in programming and proving time through using ALGOL is very great,
whereas the increase in computation time is less significant. ALGOL greatly
increases the general purpose computing power of the MCS 920, and also permits
the interchange of programs with different computers. With compatibility in mind,
the IFIP subset of ALGOL 60 was chosen for implementation on the 920.”

“Compilation is two-pass, i.e. the ALGOL program is first put through a
translation stage giving an Intermediate Code on paper tape, which is re-input by a
loader routine, and the program is then executed by an interpreter which interprets
the Intermediate Code. There is a special facility which allows ALGOL programs
to call up procedures written in SIR code. It is valuable, amongst other things, for
speeding up matrix operations and making use of special peripheral equipment.”

The Intermediate Code is “reverse-Polish”. The same technique, of translating into a
Virtual Machine code, which is then interpreted, is used nowadays, to run “Java”
programs across the Internet.

Elliott 900 Series: Software and Sample Programs. E5X4 page 6.

The minimum configuration for running ALGOL 60 is a 920B or 903. I believe that the
Flexowriter-code version would also run on a 920A. Only the standard 8192-word store is
required. If a 16384-word store is available, there is a “load and go” version, where the
translator and interpreter occupy an 8192-word store module each, (which avoids a
considerable amount of paper-tape rewinding), and a “long program” version. See the
“Elliott 900 Technical Manual, Volume 2A, Programming Information” [14] part 1
section 2.

FORTRAN Compiler.

There are two FORTRAN Compilers for the 900-series 18-bit machines.

The first is described in the “Elliott 900 Technical Manual, Volume 2A, Programming
Information” [14] part 1 section 3:

“The 900 FORTRAN system described in this document is designed for use on a
903 computer” (or 920B) “with 8192 words of store”. “The language incorporates
most of the features of basic ASA FORTRAN. It incorporates, in addition, certain
features of full ASA FORTRAN.” “The compiler translates FORTRAN programs
into SIR. The resultant SIR program is subsequently translated and run in
conjunction with a special FORTRAN functions package.”

As with ALGOL, if a 16384-word store is available, there is a “load and go” version,
where the translator and assembler occupy an 8192-word store module each, (which
avoids a considerable amount of paper-tape rewinding), and a “long program” version.

The second is described in “905 FORTRAN” [16]:

“905 FORTRAN can be used on any 905 Series 18-bit machine which includes
teleprinter, punch and reader facilities and has a minimum store size of 16K”.
“905 FORTRAN is ASA standard FORTRAN, as defined in USASI document
X3-9-1966 with the extensions and restrictions [given in Appendix 2]”.

905 FORTRAN and MASIR use the same inter-module calling conventions.
905 FORTRAN can be run in a stand-alone paper tape environment, or within the
FAS (magnetic tape) or RADOS (disk) operating systems [page 107].

The 905 version of the compiler implements, for example, Double Precision and Complex
Arithmetic, which are not available in the 903 version of the compiler. Page 82 of [16]
implies that programs compiled with 905 FORTRAN on a 920C/905 may subsequently be
run on a 920B/903 (provided that any assembly-code inserts avoid 920C/905-specific
instructions).

Elliott 900 Series: Software and Sample Programs. E5X4 page 7.

PERT Package.

Although the 900-Series computers were designed primarily for embedded and on-line
applications and for scientific use, the PERT package deserves a mention, as possibly the
first time (October 1967) that project planning software became available to the people
doing the project. This was a precursor to some of the desktop “Office” software available
nowadays, but it used considerably less computing power.

900 PERT is described in the “Elliott 900 Technical Manual, Volume 2C, Programming
Information” [15] part 6 section 1:

“This is a program for performing time analysis on a project.”
“In the planning and analysis of a project, one of the most useful approaches is to
draw a network diagram. This diagram is a schematic representation of the
relationship between various parts of the project in the form of a network of points
in time (representing events) joined by straight lines (representing activities).”

“Using the critical path analysis technique, a time analysis can be performed on
the network. This will schedule each activity in the project, and will identify those
activities which affect the scheduled finish date of the project, i.e. are critical.
Also this technique will allow the network to be reviewed as the project
proceeds.”

The examples given in the manual [15] show dates in “14APR67” format. No millennium
compliance statement is offered. Maybe I should try it out.

CORAL Compilers.

Two completely independent CORAL 66 compilers were produced for the 900-series 18-
bit computers.

The first, 900 CORAL, was produced by what was then Marconi-Elliott Computer
Systems Ltd., and it is described in [17]:

Compilation can be performed on a 920B/903 or later machine, having at least a
16384-word store. The compiled code uses the 920B/903’s relative addressing
mode throughout, so programs can be run on any 920B/903 or later machine, with
8192 words of store or more, as required by the application.

The compiler uses a smaller first pass to perform macro expansion and to convert
the expanded source into an Intermediate Code, and a larger second pass to
generate a Relocatable Binary tape from this, which is then read into store using a
relocating loader.

The second, 920C CORAL, was produced by CAP (Reading) Ltd., for the Royal Aircraft
Establishment (Farnborough), I believe for use in the Nimrod mark II aircraft, and it is
described in [18]:

Elliott 900 Series: Software and Sample Programs. E5X4 page 8.

Compilation requires at least a 920C/905 or later machine, having at least a
16384-word store. The compiled code uses the 920C/905’s absolute addressing
mode for programs needing more than an 8192-word store, but smaller programs
can be run on a 920B/903.

The compiler uses several passes:
an optional macro expansion pass,
pass 1A which performs syntax checks,
pass 1B which performs semantic checks,
pass 2 which generates the object code,
a relocating linking loader,
 which loads into store, or punches an absolute binary tape.

An equivalent cross-compiler, hosted on the GEC 4080, but still producing 900-
series code, was also produced.

BASIC Interpreter.

This was produced for the Elliott Computer Users Association in
1978, by which date many research organisations were giving their
903 machines second-hand to local schools. It runs on any 900-series
18-bit machine that can read all 8 tracks of a paper tape.

It provides the usual interactive editing of the BASIC program text,
simple variables A to Z and A0 to Z9, arrays A(..) to Z(..) with one or two dimensions,
floating-point arithmetic with slightly wider range and better accuracy than ALGOL or
FORTRAN, built-in functions (ABS, ATN, CLG, COS, EXP, INT, LOG, RND, SGN, SIN, SQR,
TAN), user-defined functions FNA to FNZ, IF statements permitting AND & OR, and FOR &
NEXT statements and GOSUB & RETURN statements with no arbitrary depth limitations.

All of this, and meaningful error messages, occupies only about 3000 words of store, plus
120 locations of static workspace, 754 locations for simple variables and array & function
descriptors, and a small amount for a general-purpose stack. Over half of an 8192-word
store is available for the user’s program and for array variables.

Being an interpreter, it isn’t very fast. But it does avoid the endless rewinding of paper
tape editors, translators, and executables, associated with a class full of school children all
trying to develop even the smallest programs in SIR, ALGOL or FORTRAN. See “900
BASIC” [19].

Simulators.

A simulator was written in around 1963, to run on an Elliott 803B, to simulate a 920A
with just 2k of store, so as to facilitate the early development of 920A software. See [20].

A simulator was written (experimentally) in the early 1980s, to run on machines which
came later than the 900-series, in order to be able to continue running 900-series 18-bit

Elliott 900 Series: Software and Sample Programs. E5X4 page 9.

software with no access to a machine. Other benefits are that it can perform multi-pass
compilations without user intervention, and it can access disk files in lieu of paper tape.

It is written in Ada83, and ran initially on a DEC VAX, but it was subsequently easily
ported to run on any IBM PC running DOS. It is available (in executable form) on the
Internet, complete with the tape image of the 900 ALGOL load-and-go system (described
above). So if you want to run ALGOL 60 programs on your PC, see [21].

More recently, in 2002, a very thorough simulation of the 900-series 18-bit machines was
written by Hans Pufal at ACONIT. It runs under Windows 95 or later, complete with a
graphical representation of a 903 control panel. I’m not sure if this is available in the
public domain yet. See [22].

Survivors.

An Elliott 920B was donated to the London Science Museum in 1987, by Paul Rayner of
GEC, as reported in [23]. I’m not sure what other 900-series 18-bit machines the Science
Museum has, but I believe they have the 905 previously owned by Strathclyde University.

CCS Member Don Hunter has owned a 16k Elliott 903 for many years. I’m unsure of its
current working status.

CCS Member Terry Froggatt has had a 16k ARCH 9000 (equivalent to a 920B/903) since
1978, which he interfaced to a Pentium in 2001, although it is now not quite working. He
also has had a 903 since 1981 for spares, which has never quite worked. Given a little
spare time he’s sure he could get one of his machines fully working again.

12/13-bit machines.

I know nothing about the 13-bit ARCH 102, except that it might have been coded in a
notation the same as the 18-bit T2 (described above) but using 5-track tape: see [24].
The rest of this section relates to the later 12-bit machines.

Simulators.

A simulator was completed in 1968, to run on 900-series 18-bit machines, to simulate the
12-bit machines, so as to facilitate the early development of the 12-bit software. See “900
Series 18-bit Computer Aids to 12-bit Computer Users” [25].

I am not aware of any simulators that might have been written, to run on machines that
came later than the 900-series, in order to be able to continue running 900-series 12-bit
software with no access to a machine. (But no doubt the 12-bit software could be run in
the 12-bit-in-18-bit simulator, running inside either of the 18-bit-in-PC simulators).

Elliott 900 Series: Software and Sample Programs. E5X4 page 10.

Symbolic Assembly Program (SAP).

SAP is the native assembler on the 12-bit machines, and is the equivalent of 2-pass SIR
on the 18-bit machines, with added facilities to cope with addressing data on 128-word
pages and to cope with calling subroutines on a 12-bit machine within a 15-bit address
space. See “MC2/144 902 Programming Manual” [26] part 2 section 2.

A cross-assembler was also completed in 1969, called EHB, running on 900-series 18-bit
machines, generating code for the 12-bit machines, so as to facilitate the early
development of the 12-bit software. See “900 Series 18-bit Computer Aids to 12-bit
Computer Users” [25].

FORTRAN Compiler.

“902 FORTRAN” was issued by Marconi-Elliott Computer Systems Ltd., although I
think that it was written for them by a software house. This is a native compiler, requiring
at least an 8192-word store both for compilation and execution. See “MC2/144 902
Programming Manual” [26] part 2 section 3.

CORAL Compiler.

“12/12 CORAL” was written by System Designers limited, using their Portable CORAL
Compiler technology. This was a cross-compiler, hosted on a GEC 4080, with no native
equivalent. See “Systems Designers Limited CORAL 66 Reference Manual” [27].

Survivors.

I am not aware of any surviving 900-series 12-bit or 13-bit machines.

Terry Froggatt, April 2004.

Elliott 900 Series: Software and Sample Programs. E5X4 page 11.

