
 1

Version 1, August 2011. CCS-N1X4

 Programs and software for the English Electric DEUCE.

Over the years, NPL and English Electric produced a large number of standard library
routines, including matrix-handling routines, for DEUCE. There were also several
interpreter systems in existence, including General Interpretive Program, GIP, Alphacode
and Easycode. A description of all these systems is beyond the scope of this section.

Below are given two examples of DEUCE machine-code programs, in order to give a
general impression of the use of the instruction set. In the first (simpler) example,
instructions are given in their basic form of <source> - <destination>, with the other fields
(next-instruction address, characteristic, wait-number, timing number, etc.) omitted. In the
second example, the instructions in the left-hand column are written in the basic <source>
- <destination> form whilst those in the right-hand column have the timing details added.
The second program contains two conditional branch instruction, whose alternate paths
are shown in diagram form in the left-hand column. For both the first and second program,
the annotations (a), (b), etc., refer to notes given at the end.

Example 1, taken from pages 40 and 41 of the English Electric DEUCE programming
manual – see: http://users.tpg.com.au/eedeuce/pm.htm

 To punch out results, up to 128 in number, on successive rows of

 several cards and then proceed to read in more data. The number of

 results is determined by a parameter "n", and they are stored in 70,

 71, --- 731, 80 etc. up to 1031. They will be referred to as

 A(0), A(1), --- A(i), --- A(n-1), the number "i" being stored in

 TS15.

 30 - 15

 10 - 24

 |--------------->|

 | "I" - 13 (a)

 |

 | 15 - 14 (b)

 |

 | 14 - 25 (c)

 |

 | 23 - 14 (21 m.c.) (d)

 |

 | 24 -14 (4 m.c.) (e)

 |

 | 14 - 25 (f)

 |

 | 13 - 0 (m.c. 30) (g)

 |

 | Q30 A(i) - 29X (h)

 |

 | 131 15 - 13 (i)

 |

http://users.tpg.com.au/eedeuce/pm.htm

 2

 | 28 - 25 (j)

 |

 | 13 - 15

 |

 | "n" - 14 (k)

 |

 | 26 - 28 (l)

 | / |

 | non zero / | zero

 |<-----------/ |

 9 - 24 (m)

 12 - 24 (n)

 Read more

 data

NS-y-16/5-56

Page 41

Notes.

(a) "I" is "1,7 - 29, 0,31,X".

(b) Place "i" in TS14, which has shifting facilities.

(c) Add "i" to the Wait number. Since the maximum value of "i" is 127,

 reaching the 23rd digit, this addition can never spill over into

 the Timing number, which starts in the 26th digit.

(d) Shift down 21 places, wiping out the lowest five digits of "i".

 What is left must be added to the Source number.

(e) Shift the result of instruction (d) into the Source number position.

(f) Add it to the instruction.

(g) The modified instruction enters TS COUNT in m.c. 30, so that its

 Wait and Timing numbers are respectively the minor cycles of

 transfer and of the next instruction.

(h) The modified instruction must be "1, (7 + a) - 29, b,31,X", where

 "i" has reached the value (32a + b) "b", in fact, is the lowest

 five digits of "i", and "a" the remaining digits, reduced to

 units of P5.

(i) The storage location of this instruction determines the N and T

 numbers of "I".

(j) Add P17 to "i". This happens in every cycle, so that TS15 contains

 "i" units of P17, ready to add into the Wait number without the

 need for any shifting.

(k) Place "n" in TS14. Since this is to be compared with the "i" x P17

 in TS15. "n" must originally have been punched (or set on the

http://users.tpg.com.au/eedeuce/pm.htm#contents#contents
http://users.tpg.com.au/eedeuce/pm.htm#p42#p42

 3

 I.D.) in units of P17. This is very common practice.

(l) S26 gives zero only if the numbers in TS14 and TS15 are equal;

 that is if "i" and "n" are equal. The machine therefore proceeds

 back to instruction (a) if there are more results to be punched,

 and otherwise to instruction (m).

(m) Stop the Punch.

(n) Start the Reader.

Example 2: taken from pages 48 and 49 of the manual.

 To multiply the numbers in TS14 and TS16, allowing for the sign of

 either.

 DL2. m.c. Coding.

 (31) 30 - 212 (a) m.c.

 (19) 14 - 213 (b) 19 2, 14 - 21, 0, 0

 (21) 0 - 24 (c) 20 2, 16 - 27, 0, 1

 (25) 14 - 27 (d) 21 2, 0 - 24, 0, 2

 / \

 +/ \- (e) 22 2, 13 - 23, 1, 2

 / \

 (29) 30 - 13(30) 16 - 13 (f) 23 2, 30 - 29, 0,29

 \ /

 \ / 24 2, 14 - 25, 0,28

 \ /

 (20) 16 - 27 (g) 25 2, 14 - 27, 0, 2

 / \

 +/ \- 26 2, 21 - 22,1,(32-2n),31

 / \

 (23) (h) dummy (24) 14 - 25 (i) 27 1, 29 - 23, 1,1

 \ /

 \ / 28

 \ /

 (22) (j) 13 - 233(after mult) 29 2, 30 - 13 0,21

 (26) (k) 21 - 22 (2n m.c. e,o) 30 2, 16 - 13 0,20

 (27) (l) 29 - 232 31 2, 30 - 21, 1,18

 130 Next part of programme.

 Notes.

 (a),(b),(c) Start multiplication as before.

 (d) to (i) Build up the sign correction ready to subtract into

 the top half of the product after multiplication. The

 correction consists of zero if both factors are

 positive, one factor if only the other is negative,

 and the sum of both factors if both are negative.

 4

 (h) The coding must allow a time of at least two major

 cycles between (c) and (j). If the dummy were omitted,

 a third major cycle would elapse between (g) and (j) if

 the number in TS16 were positive.

NS-y-16/5-56

Page 49

 (j) Subtract in the correction. This happens in m.c. 25

 (see coding), whereas multiplication started in m.c. 23

 two Major Cycles before. In other words, we are just all

 right.

 (k) Shift the product up n places. n can be any number from

 1 to 16, and is determined by the Wait number of the

 instruction (in m.c. 26). This allows for binary places.

 When working to 27 b.p., for example, the product of

 two numbers with 27 b.p. each has 54 b.p. The binary

 point after multiplication comes between P22 and P23

 of the top half. Shifting up by five b.p. brings the

 point between P27 and P28 of the top half. Taking this

 top half as the answer leaves us still with 27 b.p.

 (l) Subtract P32 into 212. Well, that's what it looks like.

 The actual effect is to add P32 into 212. Remember that

 a transfer to D22 or D23 in an even m.c. only, with TCB

 off, of a number which has a "1" in P32 position, is

 automatically followed by the transfer of 32 "1" s to

 the same destination. This means that P32 (even) when

 sent to D22 or D23 looks just like -P32 (even) so that

 in order to add it you have to subtract. The object is

 to balance the error, as was done at the end of the

 division and square root examples. It is assumed that

 only the top half of the product is to be taken on to

 the next stage of the calculation. Without this

 preliminary addition of P32 (even) the error caused by

 dropping the bottom half would vary from zero to -1 in

 the bottom binary place. With the round off, the

 resultant error varies from -½ to +½ in the bottom

 place.

 The coding of this example may appear a little eccentric,

 but there is method in the madness. The salient points

 are that all the instructions are crammed as tightly as

 possible into bottom of DL2 (except for the gap at 228

 which will be explained) and that the last instruction

 of the multiplication, 227, leads on to 130 for the

 first instruction in the next part of the programme.

 The reason for both of these manoeuvres will appear

 in section 7.1.

http://users.tpg.com.au/eedeuce/pm.htm#contents#contents
http://users.tpg.com.au/eedeuce/pm.htm#p50#p50

