
Issue 3 January 2005

Ferranti Mercury Computer
X3. Instruction Sets and Instruction Times.

Index

D2 Power comparisons
D5 Instruction sets
Description of instructions
References

Issue 3 January 2005

D2 Power comparisons5,6.

As Mercury was designed for floating point arithmetic only, comparisons based on fixed point
addition are unrepresentative. Such fixed point operations as there were - B-operations - were
just 10 digits, not comparable to the 30+ bits of other machines.

 Date Word Floating Floating Fixed On-line store
 length Add multiply add

Mercury 1957 40 180 µS 300 µS 60 µS (10 bit) 5 + 80 K bytes
Mark I 1951 40 40 mS 24 mS 1.8 mS (av) 128 + 1024 bytes
UNIVAC I 1951 84 525 µS
Mark I Star 1953 40 1.2 mS 416 b + 16 Kb
EDVAC 1953 44 0.86 mS 5 Kb+
IBM 701 1953 35 60 µS
IBM 704 1954 36 84 µS 192 µS 24 µS 128 Kb + 8 Kb / drum
EDSAC I 1949? 36 1.5 mS 4 Kb
EDSAC II 1957 40 75 µS 200 µS 20 µS 5 Kbytes core
KDF9 1961 48 5 - 10 µS <14 µS 1 µS 32 Kw core
 Fl/fi * <14 µS; / 28µS

IBM 7030 1961 64 1.5 µS 2.4 µS 768 Kb
(Stretch) (pipeline rate 64 bit)
Atlas 1963 48 1.61 µS 5 µS 1.59 µS 192 + 576 Kb

Note:-
1. Bytes of 8 bits as used for store sizes in 2004 is not a good comparison, since the ‘bytes’ used
in older machines were not 8 bits. Mercury worked with 10-bit chunks which could hold two 5-
bit characters if necessary, alphanumeric characters being of ‘minor’ importance. Atlas worked
with 6 bit characters (8 characters in 48 bits - 6 (8 bit) bytes per word is a bit odd).

2. Figures for American machines are not easy to find, and different sources are inconsistent,
possibly due to confusion between fixed and floating point, possibly due to pipelining, some
giving repetitive result, some arithmetic time, some single time through the pipeline.

D5. Instruction sets.

 The instruction set table and a description of all instructions is appended to this section.
There are a notional 100 instructions numbered 00 to 99.

 Addressing could read Medium words of 20 digits (first half of computational store only),
and Long words of 40 digits. Half words of 10 digits can also be accessed. Floating point
numbers consisted of two words, the first in an even address. One half word is the exponent and
three half words the argument (mantissa). The exponent, H0, was base 2 and the argument was -
1 < x < 1 in H1 to H3

1, H3 being the most significant. The exponent had a range of -256 to +255,
the two most significant digits being normally the same for overflow detection. This gives a
range of 10-77 to 1076 with about nine decimal digits accuracy. With two exceptions, floating
point calculations were rounded by placing a 1 in the least significant digit2 after the calculation

Issue 3 January 2005

and again, if necessary, after standardisation (normalisation). Thus in practice the argument was -
1 < x < -½; ½ < x < 1.

 Eight B-registers were provided for address modification primarily. B7 was a special
fixed point ‘short accumulator’, usually termed the sac, S. A B-test, Bt, and an S-test, St, register
were also provided each containing two bits, the sign (> 0, < 0) and result of last B/sac
computation equal to 0 or not.

 A number has the most significant bit equal to -1 and the rest as a number in the range ½
< x < 1; thus 0.11 is ¾ and 1.11 is -1 + ¾ = -¼. This is one definition of true (twos) complement
numbers.

 Instructions are single address and are 20 digits long. They consist of

 Function - 7 binary digits; B-register - 3 digits; address - 10 digits.

Instructions must be in the first 16 pages of the computational store (i.e. half of it). Half words
can only be referred to in this half of the store2. Instructions include special functions to
manipulate the floating point exponent, and an instruction to detect a pre-shift of more than 31
bits in an add/subtract. When summing series this last enables a jump out of the loop when the
new addend is too small to make a difference. There are also instructions to read from the tape
reader, write to the tape punch and to the display on the Control Desk (not console4). Other
instruction codes (8x) are used for instructions for card input, output, line printer and magnetic
tape operation.

 Reading from or writing to the drum took two instructions. The first set the sector address
in a sector register, T; the second indicated which page in the computational store to write to or
read from. Sectors 0 to 63 on the drum held library routines. Those on sectors 0 and 1 could not
be overwritten normally.

 The clock rate was 1 Mc/s (Mhz) giving a floating point add time of 180 µS and multiply
of 300 µS. Division is by programme (note spelling!4) and takes 3½ mS. Arithmetic was serial.
Organisational (‘B’) instructions took 60 µS3. Transfer time for long words was 120 µS and for
B-registers, 60 µS.

Issue 3 January 2005

Ferranti Mercury Computer:
Description of Instructions

These tables are copied from “A Description of the Ferranti Mercury Computer with Ancillary Equipment”,
Appendices 2 and 3, Ferranti List DC30, June 1957, MSIM reference F Series 6 box 26/32, with updates from
DC30A, August 1958 (held by Chris Burton) and additional instructions from CS225, Programmers Handbook Nov
1958, MSIM F2 Series 6 Box 4/18.

The ' after a result name indicates the value after the instruction. Note also that ‘digit’ means bit in modern terms. H
indicates the address of a half word, L of a long word and n is the value in the address part of the instruction. S is the
sac, B7.

TABLE 1

The Arithmetical Instructions

Function Description Notation
Code

40 Transfer the long number in the specified address into the accumulator. A' = L

41 Transfer the long number in the accumulator into the specified address. L' = A

42(43) Add (subtract) the long number in the specified address to A' = A ! L
 (from) the accumulator and round off the result.

44(45) As 42(43), without roundoff. A' = A ! L
 (unrounded)

50 Replace the long number in the accumulator by the product of itself and A' = A x L
 the long number in the specified address, and round off the product.

51 As 50, but change the sign of the product. A' = - A x L

52 Replace the long number in the accumulator by the (unrounded) A' = (A x L)m
 most-significant half of the product of itself and the long number in the
 specified address.

53 As 52, but also change the sign of the product. A' = -(A x L)m

54 As 52, but for the least-significant half of the positive product. A' = (A x L)l

55 As 52, but for the least-significant half of the product, the sign A' = -(A x L)l
 of which has been changed.

TABLE 2

Two Jump instructions
(see also Tables 7, 8 and 12)

59 Jump to the specified address. C' = n

49 Jump to the specified address if the number in the accumulator is positive A m 0, C' = n
 or zero; if not, obey the next instruction.

Issue 3 January 2005

TABLE 3

B-instructions

Function Description Notation
Code

00 Transfer the integer in the specified address into the specified B-register, and B' = Bt' = H
 into the B-test register.

01 Transfer the integer in the specified B-register into the specified address. H' = B

02(03) Add (subtract) the integer in the specified address into (from) the specified B' = Bt' = B ! H
 B-register. Copy the result into the B-test register.

04 Shift the digits in the specified B-register one place towards the B' = Bt' = ½B - H
 least-significant end. Subtract the integer in the specified address, and (see Note 1)
 copy the result into the B-test register.

05 Collate the two binary numbers in the specified B-register and in the B' = Bt' = B & H
 address, digit by digit, placing the result into the specified B-register, (see Note 2)
 and into the B-test register

06 Perform the operation of non-equivalence on the two binary numbers in B' = Bt' = B g H
 the specified B-register and in the address, digit by digit, placing the result (see Note 3)
 into the specified B-register, and into the B-test register.

Notes on Table 3

1) The notation is suggestive only. If the B-register contains initially an even positive integer, then a shift
downwards of one place will halve this number. If the initial number is odd, the “1” digit at the least-
significant end will be lost, while if the initial number is negative, the final result will be positive, since the
sign digit is not duplicated.

2) The logical operation of collation gives a “1” in the result only in those positions where there is a “1” in
both operands. Thus (10110) & (10101) = (10100).

3) The logical operation of non-equivalence give a “1” in the result only in those positions where the
numbers in corresponding positions of the operands are different. Thus (10110) g (10101) = (00011).

Issue 3 January 2005

TABLE 4

B-Instructions (dual form)

Function Description Notation
Code

10 Transfer the specified integer into the specified B-register and the B' = Bt' = n
 B-test register.

12(13) Add (subtract) the specified integer into (from) the specified B-register. B' = Bt' = B ! n
 Copy the result into the B-test register.

14 Shift the digits in the specified B-register one place towards the B' = Bt' = ½B - n
 least-significant end. Subtract the specified integer, and copy the result
 into the B-test register.

15 Collate the number in the specified B-register with the specified integer, B' = Bt' = B & n
 placing the result in the specified B-register, and the B-test register.

16 Perform the operation of non-equivalence on the contents of the B' = Bt' = B g n
 specified B-register, and the specified integer. Place the result in the
 specified B-register, and the B-test register.

TABLE 5

Sac Instructions

20 Transfer the integer in the specified address into the sac and the sac-test S' = St' = H
 registers.

21 Transfer the integer in the sac into the specified address. H' = S

22(23) Add (subtract) the integer in the specified address into (from) sac. S' = St' = S ! H
 Copy the result into the sac-test register.

24 Shift the digits in sac one place towards the least-significant end. S' = St' = ½S - H
 Subtract the integer in the specified address, and copy the result into
 the sac-test register.

25 Collate the two binary numbers in sac, and the specified S' = St' = S & H
 address, placing the result in sac and the sac-test register

26 Perform the operation of non-equivalence on the two binary numbers in S' = St' = S g H
 sac and in the specified address, placing the result in sac, and the
 sac-test register.

Issue 3 January 2005

TABLE 6

Sac Instructions (dual form)

Function Description Notation
Code

30 Transfer the specified integer into sac and the sac-test register. S' = St' = n

32(33) Add (subtract) the specified integer into (from) the sac. S' = St' = S ! n
 Copy the result into the sac-test register.

34 Shift the digits in sac one place towards the least-significant end. S' = St' = ½S - n
 Subtract the specified integer, and copy the result into the sac-test register.

35 Collate the number in sac with the specified integer, S' = St' = S & n
 placing the result in sac and the sac-test register.

36 Perform the operation of non-equivalence on the contents of S' = St' = S g n
 sac and the specified integer, placing the result in sac and the sac-test
 register.

TABLE 7

The B-test Instructions

08 Jump to the specified address if the number in the B-test register is not zero. Bt g 0, C' = n

09 Jump to the specified address if the number in the B-test register is zero or Bt > 0, C' = n
 positive.

18 Jump to the specified address if the number in the B-test register is not Bt g 0, C' = n
 zero. Add 1 to the specified B-register, and copy the result into the B-test B' = Bt' = B + 1
 register.

TABLE 8

The Sac-Test Instructions

28 Jump to the specified address if the number in the sac-test register is not zero. St g 0, C' = n

29 Jump to the specified address if the number in the sac-test register is zero or St > 0, C' = n
 positive.

38 Jump to the specified address if the number in the sac-test register is not St g 0, C' = n
 zero or positive. Add 1 to sac, and copy the result into the sac-test S' = St' = S + 1
 register.

Issue 3 January 2005

TABLE 9

The comparison Instructions

Function Description Notation
Code

07 Place into the B-test register the difference between the integer Bt' = B - H
 in the specified B-register and the integer in the specified address.

17 Place into the B-test register the difference between the integer in the Bt' = B - n
 specified B-register and the integer in the address part of the instruction.

27 Place into the sac-test register the difference between the integer St' = S - H
 In sac and the integer in the specified address.

37 Place into the sac-test register the difference between the integer in sac St' = S - n
 and the integer in the address part of the instruction.

TABLE 10

Instructions for Transfers Between Computing and Backing Stores

67 Transfer the integer specified in the address part of the instruction into the T' = n
 sector register.

68 Transfer the sector indicated by the sector register to the page specified P' = D
 by the integer in the address part of the instruction.

69 Transfer the page specified by the integer in the address part of the D' = P
 instruction to the sector indicated by the sector, register.

TABLE 11

Input/Output Instructions

60 Copy the next character from the input tape into the least-significant H' = t.i.
 half of the specified address, clearing the other half.

61 Copy the hand switches into the specified address. H' = h.s.

62 Punch one tape character from the five least-significant binary digits to = n
 in the given integer.

63 Punch one tape character from the five least-significant binary digits to = H
 in the specified address.

Issue 3 January 2005

TABLE 12

Miscellaneous Instructions

Function Description Notation
Code

46 Add into the accumulator the floating point number whose A' = A + 0 x 2Y

 fractional part is zero and whose exponent is the exponent of the
 floating point number whose address is given in the address part
 of the instruction. The result is not standardised.

48 Jump to the specified address if the last accumulator addition or C' = n if Shift < 31
 subtraction involved a relative shift of less than 31 binary places.

57 Dummy

58 Hoot

64 Display on the monitors (which have to be selected) the specified Display = L
 long word.

99 Stop. The machine will proceed to the next instruction when the
 prepulse button is depressed.

TABLE 13

Instructions Relating to Accumulator Exponent and B-registers

70 Transfer the augmented exponent into the specified B-register and into B' = Bt' = Exp + n
 the B-test register.

71 Transfer the integer in the specified B-register into the exponent of the Exp' = B
 accumulator.

72 (73) Add (subtract) the augmented exponent into (from) the specified B-register. B' = Bt' = B +/- (Exp + n)
 Copy the result into the B-test register.

74 Shift the digits in the specified B-register one place towards the least- B' = Bt'
 significant end. Subtract the augmented exponent and copy the result = ½B - (Exp + n)
 into the B-test register.

75 Collate the contents of the specified B-register with the augmented B' = Bt'
 exponent, placing the result in the specified B-register and the B-test = B & (Exp + n)
 register.

76 Perform the operation of non-equivalence on the contents of the specified B' = Bt'
 B-register and the augmented exponent, placing the result in the specified = B (Exp + n)
 B-register and in the B-test register

77 Place into the B-test register the difference between the integer in the Bt' = B - Exp
 specified B-register and the exponent of the accumulator.

Note: In all cases except 71, one of the operands is the sum (modulo 1024) of the accumulator exponent and the
integer in the address part of the instruction. The sum is referred to as the “augmented exponent” in the above
definitions.

Issue 3 January 2005

Instructions added later (provisional).

Card Input and Output: two buffers each capable of holding 80 columns of 12 rows are provided.

80 Conditioning Type 1. The data on the card is transferred to the buffer. The address part of the instruction

indicates whether an exact binary copy of the contents of the computing store/buffer is required, when 80
columns are transferred to 8 short registers row by row; or for disciplined code punching the binary
equivalents of the characters in each of the 80 columns are transferred to 80 short registers. The address
part also indicates whether card or line printer is used.

81 Read card Type 1. Copies the contents of the input buffer to the page specified by the address part of the

instruction and reads the next card to the buffer.

82 Punch card/Line print Type 1 The page specified by the address part of the instruction is copied to the

buffer. The exact contents of the buffer store are punched/printed. In the case of the printer, the paper is
advanced.

83 Paper throw Type 1. Paper is fed at approx. 10 inches per second to a preset position.

Magnetic Tape backing store. Up to 8 Decks in two groups of four. Blocks of information are addressed sequentially
in four-page mode, but can be in Pegasus mode.

86 Mag-operate Type 4. Read/write from/to consecutive long registers of the computing store, beginning at the

long register specified (which must be the beginning of a page).
 Search. The long register specified must contain the address on the magnetic tape as an unstandardised 40

digit number with exponent 29.

87 Select deck and operation. Type 1. The least significant three digits of the address part specify the deck (0-

7) and the most significant three digits the operation, viz.
 101 Rewind 001 Search
 000 Read from following block 110 Write to following block
 110 Write to preceding block 100 Read from preceding block
 Apart from rewind, this must be followed by an 86 instruction.

88 TC 1 busy, C’ = n. Control jump if magnetic tape transfer control unit is busy
89 TC 2 busy, C’ = n ditto

Manchester University Graphical Output.

56 G’ = L Type 4. The contents of the third and fourth short registers of the long register are the co-ordinates

of a pint displayed on a special CRT (which can be viewed by an operator or photographed).

65 Open Shutter Type 1. Open the shutter of the camera on the graphical output.

66 Close shutter Type 1 Close the shutter of the camera on the graphical output and advance one frame.

ICI Input/output.

Up to seven input units ad seven output units.

90 S’ = Ii 5-digit tape character read to sac.

91 Io’ = S Least significant 5 digits of sac written to tape output

Manchester University Magnetic tape input/output.

92 Mo’ = n The least significant 5 digits of the address part of the instruction is written to the magnetic tape

output

Issue 3 January 2005

93 H’ = Mi The character under the read head of the magnetic tape input is read into the least significant five
digits of the short register of the computing store, clearing the most significant 5 digits. The tape is set in
motion.

The Following instructions are found in CS327, Function code sheet, 1962, MSIM F2 Series 6 Box 4/23.
There are three possibilities for each instruction according as the B digit is 0, 1-3, or 4-7

90 S = St’ = Exp + n I + n I I is information from special input channel
91 Exp’ = S + n O’ = S + n O’ = S O is information to special output channel
92 S’ = St’ = S + (Exp + n) S + (I + n) S + I
93 S’ = St’ = S - (Exp + n) S - (I + n) S - I
94 S’ = St’ = ½S - (Exp + n) ½S - (I + n) ½S - I
95 S’ = St’ = S & (Exp + n) S & (I + n) S & I
96 S’ = St’ = S g (Exp + n) S g (I + n) S g I
97 St’ = S - (Exp + n) S - (I + n) S - I

D3. References.

1 An Introduction to the Ferranti Mercury Computer. Ferranti List DC 22A, July 1957; MSIM
reference F2 Series 6 Box 26/17.

2 Programming Manual. Ferranti List CS 158, July 1957; MSIM reference F2 Series 6 Box
18/12. Has an early version of instruction code - see DC 30A for a more up to date one.

3 Ferranti Mercury Computer - Questions and Answers. Ferranti List CS 120a, August 1957;
MSIM reference F2 Series 6 Box 4/5.

4 Ferranti Mercury Computer - Recommended Terminology. Ferranti List CS 205; MSIM
reference F2 Series 6 Box 4/13.

5 Lavington, SH; History of Manchester Computers. NCC Publications, 1975.

6 Lavington, SH; Early British Computers. Manchester University Press, 1980.

