
 1

Version 1, September 2009 N2X3

KDF9: Instruction set and instruction times.

Introduction to the KDF9’s architecture.

The main memory consisted of 32768 48-bit words of core store.

There were 16 counter/index registers called Q-stores. Each was divided into three parts, Counter,

Increment and Modifier. The counter could be tested for zero or non-zero by jump instructions. The

modifier could be added to the address of main store references, in normal indexed addressing manner.

All store reference instructions had a variant which incremented the Q-store after the main store

reference, indicated by a letter Q at the end of the instruction mnemonic. In this case, after the main

store access, the counter was decremented, and the modifier increased by the value held in the

increment part. Q0 was always zero.

The arithmetic and logic took place in the nesting store. At the normal user-program level there were

16 cells in a stack. A fetch from main store or a Q-store, pushed a 48-bit value onto this stack. A store

instruction, popped the top value and put it in memory or Q-store. An immediate value could be put in

the nesting store by a SET instruction. The ZERO instruction pushed a zero word onto this stack.

An attempt to put a 17th value in the nest led to a program failure called nest overflow, and generated

an interrupt. Similarly an attempt to pop a value out of an empty nest generated an interrupt and

underflow failure.

There were instructions to swap values around in the top 4 cells of the nest, and all arithmetic took

place between operands in the upper cells of the nest. Thus the machine code was postfix.

The actual hardware of a time-sharing KDF9 actually had four such nesting stores, and four sets of Q-

stores, but only the Director program saw any of this. The English Electric document of Director is on-

line at: http://sw.ccs.bcs.org/KDF9/directorManuals/manuals.htm and gives a very good description of

how this worked.

In addition there were 2 single-bit registers, the overflow register (V) and the test (TR) register. These

were not quadruplicated, and had to be preserved by Director on interrupt, and restored on return to the

program.

The OUT instruction was a programmed interrupt, permitting a program to call on the services of

Director.

David Holdsworth.

 2

KDF9 Machine Code Instructions.

N1 = top cell of nesting store

N2 = second cell, etc

N.B. All numbers in octal

Single syllable instructions

 VR 001 clear overflow register

 =TR 002 set test register

 BITS 003 count number of bits in the word

 ×F 004 floating point multiply

 ×DF 005 floating point multiply – double length result from 48–bit operands

 006

 ×+F 007 like ×DF but then followed by double length addition

 NEGD 010 negate – double length

 OR 011 inclusive or

 PERM 012 permute top 3 nest cells, N1 becomes N3

 TOB 013 convert six chars in N1 to binary number, radix word in N2

 ROUNDH 014 round to half word

 NEV 015 not equivalent, i.e. exclusive or

 ROUND 016 round double number in N1,N2 to single in N1

 DUMMY 017 do nothing as quickly as possible

 ROUNDF 020 round floating point double number in N1,N2 to single in N1

 ROUNDHF 021 round floating point number to half length

 –DF 022 subtract double length floating point

 +DF 023 add double length floating point

 FLOAT 024 convert fixed point number to floating point

 FLOATD 025 convert double length fixed point number to floating point

 ABS 026 absolute value

 NEG 027 negate

 ABSF 030 absolute value floating point

 NEGF 031 negate floating point

 MAX 032 re–order N1, N2 to that larger is in N1

 NOT 033 invert ones and zeroes

 ×D 034 multiply two 48–bit values to give double length result

 3

 × 035 multiply

 – 036 subtract

 SIGN 037 +1 if N1 – N2 > 0, –1 if N1 – N2 < 0, 0 if N1 – N2 = 0,

 040

 ZERO 041 put 0 in N1

 DUP 042 duplicate, i.e. put copy of N1 in N1

 DUPD 043 duplicate double length

 ÷I 044 integer divide, N1 = remainder, N2 = quotient

 FIX 045 convert floating point to fixed point

 046

 STR 047 stretch 48–bit number to double length

 CONT 050 convert double length integer in N1, N2 to single length in N1

 REVD 051 swap N1 and N3, N2 and N4

 ERASE 052 remove top cell of the nest

 –D 053 subtract double length

 AND 054 logical and

 055

 + 056 add

 +D 057 add double length

 ÷ 060 divide

 ÷D 061 divide double length

 ÷F 062 divide floating point

 ÷DF 063 divide double length floating point

 ÷R 064 fancy divide for multiplength division

 REV 065 reverse, i.e. swap N1 and N2

 CAB 066 permute top 3 nest cells, N3 becomes N1

 FRB 067 convert binary to characters, radix in N2

 STAND 070 standardise floating point number

 NEGDF 071 negate double length floating point

 MAXF 072 swap N1 N2 so that N1 is larger floating point

 073

 +F 074 add floating point

 –F 075 subtract floating point

 076

 SIGNF 077 like SIGN but floating point

 4

Q-stores

Q-stores are divided into three parts (like Cæsar’s Gaul), counter, increment and modifier.

Memory addressing instructons containing Mq add the value in the modifier to the address being

accessed. For half word instructions half of one of the addresses is used.

When the instruction ends in Q, the counter is decremented, and the modifier incremented by the

amount in the increment.

For peripheral instructions, the device number goes in the counter, the start address in the increment

and the final address in the modifier.

Two syllable instructions

 Mq'Mq
 100

 20q +

q'
 fetch 48–bit value in address q + q'

 =Mq'Mq
 101

 20q +

q'
 store 48–bit value in address q + q'

 Mq'MqQ
 102

 20q +

q'
 fetch 48–bit value in address q + q' and increment Qq

 =Mq'MqQ
 103

 20q +

q'
 fetch 48–bit value in address q + q' and increment Qq

 Mq'MqH
 104

 20q +

q'

 fetch 24–bit value in address ½ q + q' to N1 top half and zeroise

bottom half

 =Mq'MqH
 105

 20q +

q'
 store 24–bit value in address ½ q + q' N.B. top half of N1

 Mq'MqQH
 106

 20q +

q'
 fetch 24–bit value in address ½ q + q' and increment Qq

 =Mq'MqQH
 107

 20q +

q'
 store 24–bit value in address ½ q + q' and increment Qq

 Mq'MqN
 110

 20q +

q'
 fetch 48–bit value in address q + q' + 1

 =Mq'MqN
 111

 20q +

q'
 store 48–bit value in address q + q' + 1

 Mq'MqQN
 112

 20q +

q'
 fetch 48–bit value in address q + q' + 1 and increment Qq

 =Mq'MqQN
 113

 20q +

q'
 store 48–bit value in address q + q' + 1 and increment Qq

 Mq'MqHN
 114

 20q +

q'
 fetch 24–bit value in address ½ q + q' + 1

 =Mq'MqHN
 115

 20q +

q'
 store 24–bit value in address ½ q + q' + 1

 5

 Mq'MqQHN
 116

 20q +

q'
 fetch 24–bit value in address ½ q + q' + 1 and increment Qq

 =Mq'MqQHN

 117

 20q +

q'
 store 24–bit value in address ½ q + q' + 1 and increment Qq

 M+Iq
 140

 20q modifier of Mq increased by value in Iq

 M–Iq
 141

 20q modifier of Mq decreased by value in Iq

 NCq
 142

 20q negate Cq

 DCq
 143

 20q decrement Cq

 Iq=+1
 144

 20q Iq = +1

 Iq=–1
 145

 20q Iq = –1

 Iq=+2
 146

 20q Iq = +2

 Iq=–2
 147

 20q Iq = –2

 150

 MqTOQq'
 151

 20q +

q'
 copy Mq to modifier of Q'

 IqTOQq'
 152

 20q +

q'
 copy Iq to increment of Q'

 IMqTOQq'
 153

 20q +

q'
 copy Iq and Mq to increment and modifier of Q'

 CqTOQq'
 154

 20q +

q'
 copy Cq to counter of Q'

 CMqTOQq'
 155

 20q +

q'
 copy Cq and Mq to counter and modifier of Q'

 CIqTOQq'
 156

 20q +

q'
 copy Cq and Iq to counter and increment of Q'

 QqTOQq'
 157

 20q +

q'
 copy Qq to all of Q'

 160

 SHACq
 161

 20q shift arithmetic by number of bits in Cq

 6

 SHAn
 161

 2n + 1

 shift arithmetic by n bits

 SHADCq
 162

 20q shift arithmetic double length by number of bits in Cq

 SHADn
 162

 2n + 1

 shift arithmetic double length by n bits

 ×+Cq
 163

 20q ×D; SHACq; +D;

 ×+n
 163

 2n + 1

 ×D; SHAn; +D;

 SHLCq
 164

 20q shift logical by number of bits in Cq

 SHLn
 164

 2n + 1

 shift logical by n bits

 165

 SHLDCq
 166

 20q shift logical double length by number of bits in Cq

 SHLDn
 166

 2n + 1

 shift logical double length by n bits

 SHCCq
 167

 20q shift cyclic by number of bits in Cq

 SHCn
 167

 2n + 1

 shift cyclic by n bits

 =Mq
 170

 20q +

2
 bottom 16 bits of N1 put in Mq

 =RMq
 170

 20q +

3
 reset Qq to 0/1/0 then store N1 in Mq

 =Iq
 170

 20q +

4
 bottom 16 bits of N1 put in Iq

 =RIq
 170

 20q +

5
 reset Qq to 0/1/0 then store N1 in Iq

 =Cq
 170

 20q +

10
 bottom 16 bits of N1 put in Cq

 =RCq
 170

 20q +

11
 reset Qq to 0/1/0 then store N1 in Cq

 =Qq
 170

 20q +

16
 all of N1 put in Mq

 Mq
 171

 20q +

2
 fetch Mq into N1

 7

 Iq
 171

 20q +

4
 fetch Iq into N1

 Cq
 171

 20q +

10
 fetch Cq into N1

 Qq
 171

 20q +

16
 fetch Qq into N1

 =+Mq
 172

 20q +

2
 add value in N1 to Mq

 =+Iq
 172

 20q +

4
 add value in N1 to Iq

 =+Cq
 172

 20q +

10
 add value in N1 to Cq

 =+Qq
 172

 20q +

16
 add value in N1 to Qq

 LINK
 173

 0 fetch top call of SJNS into N1

 =LINK
 174

 0 store N1 into top call of SJNS

 JCqNZS
 177

 20q jump to start of previous word if Cq is non–zero

 =Kn
 175

 2

7–n
 set special register – director–mode only

 Kn
 176

 2

7–n
 fetch special register – director–mode only

 =K0
 175

 200 if N1 = 0 then switch buzzer on else switch buzzer off

 =K1
 175

 100

 copy bits N1:D24–D33 to NOL, bits N1:D34–D35 to CPL and bits

N1:D38–D47 to BA

 =K2
 175

 40

 copy bits N1:D32–D47 to CPDAR, where N1:D32 corresponds to

buffer 15 and N1:D47 to buffer 0

 =K3
 175

 20

 switch to a new Q store/nest/SJNS set, with new nest depths (see

below)

 K4
 176

 10 push CLOCK/RFIR onto nest.

 K5
 176

 04 push PHU onto nest

 K7
 176

 01

 push the current register set number and nest depths, as represented

for the =K3 instruction.

The =K3 instruciton requires special care (see P29 of director listing).

N1:D0-D1 are the new register set number, N1:D2-D6 are the new nest depth and N1:D7-D11 are the

 8

new SJNS depth; the register set number is independent of the program priority level.

The =K3 instruction must be followed by at least 6 DUMMY instructions, since it takes 6µsec to take

effect and during this period the machine is in an indeterminate state.

The K5 instruction fetches bits D6-11 of the program hold up registers

 PHU0:D6-D11 in N1:D0-D5,

 PHU1:D6-D11 in N1:D6-D11,

 PHU2:D6-D11 in N1:D12-D17,

 PHU3:D6-D11 in N1:D18-D23.

Peripheral instructions (two syllable)

The unit number of the peripheral is in Cq unless otherwise stated.

Start of store area address is in Iq and end is in Mq

 CTQq
 120

 20q clear transfer – director–mode only

 MANUALQq
 120

 20q +

1
 set peripheral unready

 BUSYQq
 120

 20q +

2
 test if peripheral is busy

 MLBQq
 120

 20q +

4
 set test register if previous read was a last block

 MBTQq
 120

 20q +

10
 set test register if at begining of tape

 PARQq
 121

 20q test if peripheral has parity fail set

 METQq
 122

 20q test if peripheral has end tape set (tape deck)

 MFRQq, PRQq
 124

 20q forward read

 CLOQq
 124

 20q +

2

 clear lock–outs over area specified by Iq–Mq – director–mode

only

 TLOQq
 124

 20q +

4
 test for lock–out over area specified by Iq–Mq

 PRCQq
 124

 20q +

10
 read paper tape, all 8 holes to each 48–bit word

 PREQq
 125

 20q forward read to end message character

 PRCEQq
 125

 20q +

10

 read paper tape to end message character, all 8 holes to each

48–bit word

 MBRQq 126 20q backward read

 9

 MBREQq
 127

 20q backward read to end message character

 PWQq, MWQq
 130

 20q write

 MLWQq
 130

 20q +

10
 write followed by tape mark, i.e. write a last block

 MGAPQq
 130

 20q +

14
 leave a gap on mag tape

 PGAPQq
 130

 20q +

14
 punch blank paper tape tape

 MWIPEQq
 130

 20q +

4
 leave a really big clear gap on mag tape

 MWEQq, PWEQq
 131

 20q write to end message character

 MLWEQq
 131

 20q +

10

 write to end message character followed by tape mark, i.e. write

a last block

 MFSKQq
 134

 20q forward skip one block

 INTQq
 134

 20q +

2

 if thie device is busy suspend execution of this process until any

peripheral transfer finishes

 MBSKQq
 136

 20q backward skip one block

 MRWDQq,

PRWDQq

 136

 20q +

10
 rewind

 PIAQq
 124

 20q ordinary read

 PIBQq
 125

 20q read to end–message

 PICQq
 126

 20q which sort of read ? backward? definitely FH on disc

 POAQq
 130

 20q ordinary write

 POBQq
 131

 20q write to end–message

 POCQq
 131

 20q don't know

 PMAQq
 134

 20q seek on disc MFSK

 PMBQq 120 20q + test MBT

 10

 10

 PMCQq
 120

 20q +

4
 test MLB

 PMEQq
 136

 20q +

10
 MRWD

 PMFQq
 122

 20q MET

 PMHQq
 124

 20q +

6
 SET lock outs

 PMKQq
 134

 20q +

4
 don't know

 PMLQq
 136

 20q +

4
 don't know

Jump instructions (three syllable)

The destination address is given in English Electric literature as e/s, where e is the address of the

destination word, and s is the number of the syllable (0-5) within in the word. Instructions have to be in

the bottom 8192 words of the address space, so e is at most 13 bits.

This address is spread throughout the 3 sylables of the instruction. e is broken down into

 el the least significant 8 bits of e

 em the next 4 significant bits of e

 eh the single most significant bit

 JE(e/s)=
 220 + 10eh

+ s

 20 + em

 el jump if N1 = N2 and erase N1

 JE(e/s)≠
 200 + 10eh

+ s

 20 + em

 el jump if N1 ≠ N2 and erase N1

 JE(e/s)<Z
 220 + 10eh

+ s

 40 + em

 el jump if N1 < 0 and erase N1

 JE(e/s)≥Z
 200 + 10eh

+ s

 40 + em

 el jump if N1 ≥ 0 and erase N1

 JE(e/s)>Z
 220 + 10eh

+ s

 100 +

em
 el jump if N1 > 0 and erase N1

 JE(e/s)≤Z
 200 + 10eh

+ s

 100 +

em
 el jump if N1 ≤ 0 and erase N1

 JE(e/s)=Z
 220 + 10eh

+ s

 140 +

em
 el jump if N1 = 0 and erase N1

 JE(e/s)≠Z
 200 + 10eh

+ s

 140 +

em
 el jump if N1 ≠ 0 and erase N1

 11

 JE(e/s)V
 220 + 10eh

+ s

 200 +

em
 el jump if overflow is set

 JE(e/s)NV
 200 + 10eh

+ s

 240 +

em
 el misprint in manual

 JE(e/s)NV
 200 + 10eh

+ s

 200 +

em
 el jump if overflow is not set — probably true entry

 JE(e/s)EN
 220 + 10eh

+ s

 240 +

em
 el jump if nesting store is empty

 JE(e/s)NEN
 200 + 10eh

+ s

 240 +

em
 el if nesting store is not empty

 JE(e/s)
 200 + 10eh

+ s

 260 +

em
 el jump unconditionally

 JSE(e/s)
 200 + 10eh

+ s

 320 +

em
 el

 jump into a subroutine, address of nexxt instruction is

pushed into the SJNS

 JE(e/s)EJ
 220 + 10eh

+ s

 300 +

em
 el jump if SJNS is empty

 JE(e/s)NEJ
 200 + 10eh

+ s

 300 +

em
 el jump if SJNS is not empty

 JE(e/s)TR
 220 + 10eh

+ s

 340 +

em
 el jump if test register is set

 JE(e/s)NTR
 200 + 10eh

+ s

 340 +

em
 el jump if test register is not set

 JE(e/s)CqZ
 240 + 10eh

+ s

 20q +

em
 el jump if Cq is zero

 JE(e/s)CqNZ

 260 + 10eh

+ s

 20q +

em
 el jump if Cq is non–zero

 OUT 200 220 0 enter director – see below

 EXITD 222 360 0 exit director — director–mode only

 EXIT1 Ee 200
 360 +

em
 el exit subroutine

 EXIT Ee 202
 360 +

em
 el exit subroutine

 EXIT3 Ee 200
 360 +

em

 el +

1
 exit subroutine

 EXIT2 Ee 202
 360 +

em

 el +

1
 exit subroutine

The EXIT instruction is very odd. EXIT1 means exit one half word after the address in the SJNS, and

is the simple way out of a subroutine.

 12

EXIT2 means exit two half words (i.e. one whole word) after the address in the SJNS, and is used as

the normal exit from a subroutine, when that subroutine also has an error condition to indicate. In the

case of error, the subroutine would do EXIT1 in the expectation that the next instruction was a jump to

the error processing routine.

It was also occasionally used to implement a switch by placing a computed address in the SJNS, and

using the EXIT label instruction where label was at the start of a list of jump instructions.

Data fetch and store instructions (three syllable)

The destination address is a 15-bit word address e.

This address is spread throughout the 3 sylables of the instruction. e is broken down into

 el the least significant 8 bits of e

 em the next 4 significant bits of e

 eh the three most significant bits

For the SET instruction

 nl the least significant 8 bits of n

 nh the most significant 8 bits of n

 Ee 300 + 10eh em el fetch 48–bit word from absolute address

 =Ee 301 + 10eh em el store 48–bit word in absolute address

 EeMq 300 + 10eh 20q + em el fetch 48–bit word from e + Mq

 =EeMq 301 + 10eh 20q + em el store 48–bit word in e + Mq

 EeMqQ 302 + 10eh 20q + em el fetch 48–bit word from e + Mq and increment Qq

 =EeMqQ 303 + 10eh 20q + em el store 48–bit word in e + Mq and increment Qq

 SETn 304 nh nl put the value n in N1

OUT instructions

The OUT instruction causes an entry into director, and its action thus depends on the director in use.

However, there was always good consistency among the various incarnations of the time-sharing

director. The following table is constructed from reading the code of the Eldon2 director from Leeds

and the time-sharing director from Oxford.

The “out number” was in N1 and any other parameters in N2 etc. Obeying OUT with an empty nest

was equivalent to OUT 0.

 N1

 N2

 N3

 Action

 0 n/a n/a end the program

 13

 1 program name load and enter a new code module whose name is in N2/N3

 2 time limit
 n/a

 load and enter a new code module whose name is in N2/N3

 3 n/a
 n/a

 put time used so far in N1

 4 tape label
 n/a

 claim mag tape with 8 char label – unit number in N1

 5

 1 = paper tape

punch

 2 = paper tape

reader

 3 = line printer

 4 = card reader

 n/a

 claim peripheral device – unit number in N1

 6 unit number
 n/a

 deallocate peripheral device

 7 mt unit number
 n/a

 deallocate mag tape, but leave loaded

 8
 params in Q–store

format

 n/a

 transfer to the output well, Cq is stream number

 9 n/a
 n/a

 put clock–on–the–wall time in N1

 10

 tape label claim mag tape with 16 char label – unit number in N1

 14

 ? ? someting to do with job accounting

 15

 ? ? someting to do with job accounting

 17

 n/a

 n/a

 put notional elapsed time in N2 and run time in N1

 19

 ? ? someting to do with job accounting

 20

 Q–/LO/HI (644

word buffer)

 n/a

 General text file location routine (NPL only)

Enter with W0/1 of buffer = identifier

Exit nest empty. Buffer containing

 W0= D0-23 Disc address of index block

 D24-47 Program address of entry - if found

 D24-47 0 - if not found

 W1= FOC library/FOC archive

 W3= mask

 W4-643= index block

 14

 25

 Q–/LO/HI of prog

now in store

 n/a

 restore dumped prog if D0=0, swop levels if D0=1 Used by JO to

restart prog after JO has rolled it back into store

 39 ? ? initiate foreground job

 50

 ? ? put stats block (job accounting) onto the OUT8 tape

 51

 ? ? put stats block (job accounting) onto the OUT8 tape

KDF9 Lineprinter Character Code

 00 space

 01 not used

 02 line feed

 03 page feed

 04 tab ?

 05 not used

 06 %

 07 '

 10 :

 11 =

 12 (

 13)

 14 £

 15 *

 16 ,

 17 /

 20 0

 21 1

 22 2

 23 3

 24 4

 25 5

 26 6

 27 7

 30 8

 15

 31 9

 32 not used

 33 10

 34 ;

 35 +

 36 –

 37 .

 40 not used

 41 A

 42 B

 43 C

 44 D

 45 E

 46 F

 47 G

 50 H

 51 I

 52 J

 53 K

 54 L

 55 M

 56 N

 57 O

 60 P

 61 Q

 62 R

 63 S

 64 T

 65 U

 66 V

 67 W

 70 X

 71 Y

 72 Z

 73 not used

 16

 74 not used

 75 →

 76 start message

 77 ignored

KDF9 Paper Tape Character Code

Although the paper tape was 8-hole, it was used in a most curious way, and each row of holes produce

only one 6-bit character in the machine.
 ooooo.ooo

 s::p: :::

The holes marked with colons are the 6 bits that are transfered to the machine. The hole marked p is the

parity bit. Parity is even. The hole marked s was only used in the space character so as to distinguish it

from blank tape.

It was a two shift system, the cases being called shift and normal.

 normal shift

 00 space

 01

 02 CR–LF

 03

 04 tab

 05

 06 case shift

 07 case normal

 10

 11

 12

 13

 14

 15

 16

 17 / :

 20 0 ^

 21 1 [

 17

 22 2]

 23 3 <

 24 4 >

 25 5 =

 26 6 ×

 27 7 ÷

 30 8 (

 31 9)

 32 underline underline

 33 10 £

 34 ; ;

 35 + ≠

 36 – *

 37 . ,

 40 not used not used

 41 A a

 42 B b

 43 C c

 44 D d

 45 E e

 46 F f

 47 G g

 50 H h

 51 I i

 52 J j

 53 K k

 54 L l

 55 M m

 56 N n

 57 O o

 60 P p

 61 Q q

 62 R r

 63 S s

 64 T t

 18

 65 U u

 66 V v

 67 W w

 70 X x

 71 Y y

 72 Z z

 73 not used not used

 74 not used not used

 75 → →

 76

 77 ignored ignored

Peripheral instructions (two syllable) — a complete list ??

Documentation on the peripheral instructions that came later in the life of KDF9 is difficult to find.

This complete(?) list of PI, PO and PM instructions was compiled with the help of Bill Findlay. There

is good reason to believe that there were no more such instructions acceptable to English Electric’s

Usercode Compiler.

 PIAQq
 124

 000

 ordinary read MFRQq, PFRQq

 PIBQq
 125

 000

 read to end–message MREQq, PREQq

 PICQq
 124

 010

 PRCQq PRCQq

 PIDQq
 125

 010

 PRCEQq PRCEQ

 PIEQq
 126

 000

 MBRQq MBRQq

 PIFQq
 127

 000

 MBREQq MBREQ

 PIGQq
 126

 010

 alpha–numeric char read on CR

 PIHQq
 127

 010

 alpha–numeric char read to → on CR

 PMAQq

 134

 000

 seek on disc MFSKQq

 PMBQq

 120

 010

 test MBT MBTQq

 19

 PMCQq

 120

 004

 test MLB MLBQq

 PMDQq

 136

 010

 MRWD MRWDQq

 PMEQq

 136

 000

 MBSK MBSKQq

 PMFQq

 122

 000

 MET METQq

 PMGQq

 134

 010

 Read C–store Bill’s best guess

 PMHQq

 134

 004

 Set lockout Bill’s best guess

 PMKQq

 135

 000

 IBM Even parity skip forward Bill’s best guess

 PMLQq

 137

 000

 IBM Even parity skip back Bill’s best guess

 POAQq

 130

 000

 ordinary write MWQq, PWQq

 POBQq

 131

 000

 write to end–message

 MWEQq, PWEQq,

TWEQq

 POCQq

 130

 010

 PWCQq and MLWQq MLWQq

 PODQq

 131

 010

 PWCEQq and MLWEQq MLWEQq

 POEQq
 130

 014

 PGAPQq and MGAPQq MGAPQq, PGAPQq

 POFQq
 130

 004

 MWIPEQq MWIPEQq

 POGQq

 132

 000

 CP A/N; FD Next sector Bill’s confident guess

 POHQq

 133

 000

 CP A/N, →; FD Next sector, → Bill’s confident guess

 POKQq

 133

 010

 CP A/N, →, Character mode; FD Next sector, →,

fixed heads
 Bill’s confident guess

 POLQq
 132

 010

 CP A/N, Character mode; FD Next sector, fixed

heads
 Bill’s confident guess

